

TEST / CALIBRATION REPORT

Type Test Report

for

MECO Analog Frequency Meter

Testing as per IS 1248 : 1993 (Category II)

ELECTRONICS REGIONAL TEST LABORATORY (WEST)

MINISTRY OF COMMUNICATIONS & INFORMATION TECHNOLOGY, (STQC Dte.)

Government of India

Plot No. F 7 & 8, MIDC Area, Opp.SEEPZ, Andheri (E), Mumbai-400 093. Phone : (022) 2832 5134, 2830 1468, 2830 1138 Fax : (022) 2822 5713 E-mail : ertlbom@bom4.vsnl.net.in

MEMORANDUM

The Test/Calibration Report issued by **ERTL (W)** is a record of the measurements conducted on the products submitted to it for testing / calibration and the results thereof. Unless otherwise specified in the report, the results are applicable only to those products which have been tested / calibrated and do not apply to other products even though declared to be identical.

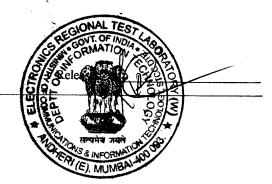
This Report, if reproduced for any purpose-commercial or otherwise would be reproduced in full. Reproduction of a part of the report or an abstract thereof must be specifically approved from the **ERTL (W)**.

LIABILITY CLAUSE

- 1. **ERTL (W)** shall not be liable for any change in test / calibration data and performance specification on account of malfunctioning of the standard / instrument /equipment due to any damage caused to it after the report, in respect of it has been issued.
- 2. The report shall not be regarded in any way diminishing the normal contractual responsibilities / obligations between the customer and ERTL (W).
- 3. The result reported in this report are valid only at the time of and under the stated conditions of the measurements.

ELECTRONICS REGIONAL TEST LABORATORY (WEST)			
DEPARTMENT OF INFORMATION TECHNOLOGY (STQC Dte.)	REPORT NO. ERTL(W)	/2002E&S	\$293
SUBJECT: TYPE TESTING OF ANALOG FREQUENCY	DATE	PAGE	OF
METER	2 JUL 2003	1	9

1. SCOPE


- 1.1 Service Request No : ERTL(W) / 20022611 dated 31-Dec.-2002
 1.1.1 Service Request finalised on : 31-Dec.-2002
 1.2 Requested by (Name and address of organisation) : MECO INSTRUMENTS PVT LTD., 301, BHARAT INDUSTRIAL EASTATE,
- 1.3 Description Qty Manufacturer Model Serial Nos. ANALOG FREQUENCY 03 MECO F 96 1067/3 - SAMPLE 1 (S1) METER, 45 – 55 Hz. Nos. 1068/3 - SAMPLE 2 (S2) CLASS - 0.5 1069/3 - SAMPLE 3 (S3)
- 1.4 Test specifications
- 1.5 Lab Ambient
- 1.6 Test Equipment used :

TYPE TEST AS PER IS 1248 : 1993 CATEGORY II

T.J. ROAD, SEWREE (W), MUMBAI – 400 015.

Temperature	:	(25 <u>+</u> 2) deg.C
Humidity	:	(55 <u>+</u> 5) % RH

1.	Calibration System	S&C/138
2.	D.M.M	E&S/120
3.	Digital Insulation Tester	E&S/121
4.	Energy Meter Calibrator	E&S/125
5.	W/I Auto Tester	E&S/066
6.	Environmental Chamber	ENV/042
7.	Environmental Chamber	WK 1000-2
8.	Vibration Machine	ENV/008
9.	Shock Test Machine.	ENV/018

ATE DATE PAGE C Image: Second	2 JUL DATE 2003 PAGE 2 OF 9 terminals Not less than 5 M ohm Aohm Aohm Aohm terminals Not less than 5 M ohm S-1 S-3 Complied een terminals Not less than 5 M ohm Mohn Mohn Mohn een terminals Not less than 5 M ohm Mohn Mohn Mohn een terminals Not less than 5 M ohm S-1 S-3 Complied oody breakdown flashover. >2000 >2000 >2000 terminals There shall not be any No breakdown of flashover. Complied on body. breakdown flashover. 0.05 % 0.09 % 0.09 % 45 Hz Class index (0.5%) 5.1 5.2 5.3 Complied 55 Hz Class index (0.5%) 0.16 % -0.09 % 0.02 % 0.03 % 55 Hz 0.18 % -0.09 % 0.02 % 0.03 % 0.03 % 60 Hz 0.33 % 0.22 % 0.33 % 0.33 % 61 Hz 0.33 % 0.22 % 0.33 % 0.33 % 62 % 0.33 % 0.33 % 0.34 % 0.34 % 55 Hz 0.33 % 0.33 % 0.31 % 0.34 % 55	ESTING AMALOG FREQUENCY METER ESTING AMALOG FREQUENCY METER ESTING AMALOG FREQUENCY METER ESTING AMALOG FREQUENCY METER Test Condition A 1500 V DC for 1 min, between terminals A 1600 wing equidistant points A 1600 wing equidistant points A 1600 wing equidistant A 2 1 2.2 A 2 1 A 2 2 A 2 1 A 2 1 A 2 1 A 2 2 A 2 2 A 2 1 A 2 1 A 2 2 A 2 2 A 2 2 A 4 4 A 4 A 4 4	2 JUL DATE terminals Not less than 5 M ohm Ann terminals Not less than 5 M ohm S-1 S-2 een terminals There shall not be any M ohm M ohm een terminals There shall not be any No breakdown or flashover. > 2000 acen terminals There shall not be any No breakdown or flashover. > 2000 acen terminals There shall not be any No breakdown or flashover. > 2000 acen terminals There shall not be any No breakdown or flashover. > 2000 at 8 Hz Class index (0.5%) -0.16% -0.06% 5 Hz 48 Hz -0.16% -0.09% ag Hz -0.16% -0.03% 0.22% ag equidistant 100% of class index 0.33% 0.22% 5 Hz 0.36% 0.24% 0.22% 5 Hz 0.36% 0.24% 0.22% ag equidistant 100% of class index 0.33% 0.22% 5 Hz 0.36% 0.24% 0.22% 5 Hz 0.36% 0.24% 0.27% 5 Hz 0.38% 0.13% 0.22%	CONICS REGION RY OF INFORM	ELECTRONICS REGIONAL TEST LABORATORY (WEST) MINISTRY OF INFORMATION TECHNOLOGY (STQC Dtc.)		REPORT	REPORT NO. ERTL(W) / 2002E&S293	/) / 2002E&S	93
Imate: Test Condition Requirement Observation Remunication number At 500 V DC for 1 min. between terminals Not less than 5 M ohm M ohm M ohm M ohm M ohm ashorted together and body. shorted together and body. > 2000 > 2000 > 2000 > 2000 > 2000 tage AT 2 kV AC rms for 1 min. between terminals There shall not be any No breakdown or flashover Comp tage AT 2 kV AC rms for 1 min. between terminals There shall not be any No breakdown or flashover Comp tage AT 2 kV AC rms for 1 min. between terminals There shall not be any No breakdown or flashover Comp tage AT 2 kV AC rms for 1 min. between terminals There shall not be any No breakdown or flashover Comp shorted together and foil wrapped on body. Between terminals There shall not be any No breakdown or flashover Comp tage AT 2 kV AC rms for 1 min. between terminals There shall not be any Observation case of any of the 3 Samples Error At following equidistant points S 1 L S - 1 S - 2 S - 3 Comp table Lower termp. 10 deg. C, Upper termp. 37 deg. C Permissible variation shall be S - 1 S - 3 S - 3 Comp <	Image: Test Condition Requirement S-1 S-3 Complication a horord together and body: Inter stan 5 M ohm > 2000 > 2000 > 2000 a horord together and body: Inter stall not be any No last Newer > 2000 > 2000 a horord together and body: Description > 2000 > 2000 > 2000 a horord together and body: Description > 2000 > 2000 > 2000 a horord together and body: Description > 2000 > 2000 > 2000 a horord together and body: Description > 200 > 2000 > 2000 a horord together and foil wrapped on body: Description > 2000 > 2000 a horord together and foil wrapped on body: Description > 2000 > 2000 a horord together and foil wrapped on body: Description > 2000 > 2000 a horord A following equidistant points 48 Hz Class index (0.3%) 0.00 %, 0.00 %, 0.00 %, a horor S 11 S - 1 S - 1 S - 2 S - 3 Complied a horor Dower together and foil wrapped on body: Dower together and foil wrap for a 35 %, 0.00 %, 0.00 %, 0.00 %, a horor A following equidistant p	Immeter Test Condition Requirement S-2 n At 500 V DC for 1 min between terminals Not less than 5 M ohm S-1 S-2 e aborted together and body. Not less than 5 M ohm S-1 S-2 aborted together and body. breakdown of flashover. No hereakdown of flashover. S-1 S-2 tage AT 2 kV AC ms for 1 min. between terminals There shall not be any No hereakdown of flashover. S-1 S-2 Error At following equidistant points 45 Hz Class index (0.5%) S-1 S-2 e At following equidistant points 45 Hz Class index (0.5%) S-1 S-2 fulle At following equidistant points S1 Hz Oto 6% Oto 6% Oto 6% fulle Lower termp. 10 deg C. Upper termp. 37 deg C Permissible variation shall be S-1 S-2 at the intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % 0.23 % at the points. 53 Hz S1 Hz 0.33 % 0.23 % 0.23 % 0.23 % at the points. 53 Hz 0.04 % 0.33 % 0.23 % 0.23 % at the points. 53 Hz 0.33 % 0.23 % 0.23 % 0.23 % <th>Immeter Test Condition Requirement S-2 n At 500 V DC for 1 min. between terminals Not less than 5 M ohm S-1 S-2 e shorted together and body. Mohm S-1 S-2 S-2 e shorted together and body. breakdown of flashover. Mohm S-1 S-2 tage AT 2 kV AC ms for 1 min. between terminals There shall not be any No breakdown of flashover. S-1 S-2 tage AT 2 kV AC ms for 1 min. between terminals There shall not be any No breakdown of flashover. S-1 S-2 entred together and foil wrapped on body. breakdown of flashover. Class index (0.5%) S-1 S-2 entred together and foil wrapped on body. S5 Hz Class index (0.5%) S-1 S-2 faile S5 Hz S2 Hz Class index (0.5%) S-1 S-2 faile Lower temp. 10 deg C. Upper temp. 37 deg C Permissible variation shall be S-1 S-2 a Lower temp. 10 deg C. Upper temp. 37 deg C Permissible variation shall be S-1 S-2 a the flash of the shalt shalt</th> <th>T : TYPE TESTE</th> <th>NG ANALOG FREQUENCY METER</th> <th></th> <th>JUL</th> <th></th> <th>PAGE 2</th> <th>9 OF</th>	Immeter Test Condition Requirement S-2 n At 500 V DC for 1 min. between terminals Not less than 5 M ohm S-1 S-2 e shorted together and body. Mohm S-1 S-2 S-2 e shorted together and body. breakdown of flashover. Mohm S-1 S-2 tage AT 2 kV AC ms for 1 min. between terminals There shall not be any No breakdown of flashover. S-1 S-2 tage AT 2 kV AC ms for 1 min. between terminals There shall not be any No breakdown of flashover. S-1 S-2 entred together and foil wrapped on body. breakdown of flashover. Class index (0.5%) S-1 S-2 entred together and foil wrapped on body. S5 Hz Class index (0.5%) S-1 S-2 faile S5 Hz S2 Hz Class index (0.5%) S-1 S-2 faile Lower temp. 10 deg C. Upper temp. 37 deg C Permissible variation shall be S-1 S-2 a Lower temp. 10 deg C. Upper temp. 37 deg C Permissible variation shall be S-1 S-2 a the flash of the shalt	T : TYPE TESTE	NG ANALOG FREQUENCY METER		J UL		PAGE 2	9 OF
Parameter Test Condition Requirement Observation Observation ation At 500 V DC for 1 min. between terminals Not less than 5 M ohm \$-1 \$-2.3 \$-3.3 Comp ation At 500 V DC for 1 min. between terminals Not less than 5 M ohm \$-10 \$-2.00	Arrange Test Condition Kequirement Observation Asson VDC for 1 min. between terminals Not less than S M ohm District Opservation Asson VDC for 1 min. between terminals ation: At 500 V DC for 1 min. between terminals Not less than S M ohm >2000 >2000 >2000 >2000 ataucc shorted together and foil wrapped on body. breakdown / flashover. Asson of flashover Complied Voltage AT 2 kV AC mms for 1 min. between terminals There shall not be any No herakdown of flashover Complied Voltage AT 2 kV AC mms for 1 min. between terminals There shall not be any No herakdown of flashover Complied Voltage AT 2 kV AC mms for 1 min. between terminals There shall not be any No herakdown of flashover Complied Voltage At following equidistant points 45 Hz Class index (0.3%) 5 · 1 5 · 2 5 · 3 Complied site Error At following equidistant points 5 · 1 5 · 2 5 · 3 Complied site Error At following equidistant points 5 · 1 5 · 2 5 · 3 Complied site Error At following equidistant points 5 · 1 5 · 2 5 · 3 Complied itices Error At following	At 500 V DC for 1 min. between terminals Not less than 5 M ohm S-1 Observation Mohm Mohm Mohm ation: At 500 V DC for 1 min. between terminals Not less than 5 M ohm > 2000 > 2000 > 2000 atance: aborted together and body. biorted together and body. biorted together and body. > 2000 > 2000 voltage AT 2 kV AC mms for 1 min. between terminals There shall not be any Mohm Mohm Mohm Voltage AT 2 kV AC At following equidistant points There shall not be any No breakdown of flashover. S-1 S-2 shorted together and foil wrapped on body. breakdown flashover. assoft at samples 0.05 % -0.05 % shorted together and foil wrapped on body. At following equidistant points Class index (0.5%) S-1 S-2 shorted together and foil wrapped on body. At following equidistant points Class index (0.5%) S-1 S-2 shorted together and foil wrapped on body. At following equidistant points Class index (0.5%) S-1 S-2 shorted together and foil wrapped on body. S Hz Class index (0.5%) S-1 S-2 tities S Hz S Hz S-1 S-2 fution due Lower termp. 10 deg C. Upper termp. 37 deg C	At Solv VDC for 1 min. between terminals Not less than 5 M ohm S-1 Observation Mohm Mohm ation: At Solv VDC for 1 min. between terminals Not less than 5 M ohm \$-2000 > 2000 > 2000 atance: ahorted together and body. biorted together and body. Dereakdown of flashover. \$-300 v DC for 1 min. between terminals There shall not be any Mohm Mohm Mohm \$-2000 > 2000 > 2000 shorted together and foil wrapped on body. breakdown' flashover. \$-300 v Bereakdown of flashover. \$-300 v Bereakdown of flashover. \$-300 v Bereakdown of flashover. shorted together and foil wrapped on body. At following equidistant points \$45 Hz Class index (0.5%) \$0.16 % \$-0.16 % siton due At following equidistant points \$45 Hz Class index (0.5%) \$-11 \$-2 siton due Buential \$48 Hz \$0.00 % of \$-0.16 % \$-0.16 % \$-0.18 % \$-0.18 % horential points. \$-0.18 % \$-0.18 % \$-0.18 % \$-0.18 % \$-0.00 % siton due Intrinsic error checked at following equidistant points. \$-0.18 % \$-0.18 % \$-0.18 % horential points. \$-0.18 % \$-0.18 % \$-0.18 % \$-0.09 % \$-0.18 %	2.0 Test Results						•
At 500 V DC for 1 min. between terminals Not less than 5 M ohm S-1 S-2 S-3 Comp storted together and body. shorted together and body. > 2000	ation At 500 V DC for 1 min. between terminals and the strain 5 M ohm 3 m 5 m ohm 3 m ohm 4 m	ation At 500 V DC for 1 min. between terminals Not less than 5 M ohm S-1 S-2 shorted together and body. shorted together and body. >2000 >2000 >2000 Voltage AT 2 kV AC mm for 1 min. between terminals There shall not be any No breakdown or fl >2000 >2000 voltage AT 2 kV AC mm for 1 min. between terminals There shall not be any No breakdown or fl >2000 >2000 shorted together and foil wrapped on body. breakdown flashover. 0.3% >5.1 S-1 S-2 shorted together and foil wrapped on body. 43 Hz Class index (0.3%) 0.04 % -0.06 % -0.09 % ation due A1 following equidistant points 43 Hz Class index (0.3%) 0.04 % -0.06 % -0.09 % finetrial interial 3.1 Hz 0.16 % -0.06 % -0.09 % -0.09 % finetrial interial ation due 5.3 Hz -0.04 % -0.06 % -0.09 % finetrial interial intersitien 37 Hz -0.06 % -0.09 % -0.09 % finetrial intrinsic error checked at following equidistant 100% of class index 0.33 % 0.23 % 0.24 % 0.23 % hobient points. 5.11	ation At 500 V DC for 1 min. between terminals Not less than 5 M ohm S-1 S-2 shorted together and body. shorted together and body. >2000 >2000 >2000 Voltage AT 2 kV AC mm for 1 min. between terminals There shall not be any No breakdown of fi Mohm >2000 >2000 Voltage AT 2 kV AC mm for 1 min. between terminals There shall not be any No breakdown of fi Mohm >2000 shorted together and foil wrapped on body. 45 Hz Class index (0.3%) 0.06 % -0.16 % shorted together and foil wrapped on body. 48 Hz Class index (0.3%) 0.04 % -0.06 % ation due 53 Hz 53 Hz 0.16 % -0.16 % -0.09 % finential interistic 0.16 % -0.16 % -0.09 % finential interistic 0.18 % 0.02 % 0.03 % finential intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % finential intrinsic error checked at following equidistant 100% of class index 0.33 % 0.23 % finential intrinsic error checked at following equidistant 100% of class index 0.33 % 0.23 % hoint points. 55 Hz 0.36 % 0.33 % 0.33	I est/Parameter	I est Condition	Kequirement		Observation		Kemark
Voltage AT 2 kV AC ms for 1 min. between terminals There shall not be any shorted together and foil wrapped on body. There shall not be any breakdown of flashover. Mohm Mohm Mohm Mohm Voltage AT 2 kV AC ms for 1 min. between terminals There shall not be any shorted together and foil wrapped on body. There shall not be any breakdown of flashover. Mohm Mohm Mohm Mohm sibility At following equidistant points 45 Hz Class index (0.5%) S-1 S-2 S-3 Comp sin 016 % -0.06 % -0.06 % -0.06 % -0.09 % -0.02 % ation due 55 Hz 55 Hz -0.16 % -0.09 % -0.02 % fuential fuential -0.06 % -0.09 % -0.02 % fuential fuential -0.018 % -0.03 % -0.03 % fuential fuential -0.018 % -0.03 % -0.03 % fuential fintential -0.018 % -0.02 % 0.03 % fuential fintential -0.018 % -0.02 % 0.03 % fuential fintential -0.018 % -0.02 % 0.02 % fuential fintential -0.018 % -0.03 % 0.03 % fintics 100% 0.22 % 0.3	And the short of the short	Notage AT 2 kV AC rms for 1 min. between terminals There shall not be any breakdown' flashover. Mohm Mohm Mohm Voltage AT 2 kV AC rms for 1 min. between terminals There shall not be any shorted together and foil wrapped on body. Voltage AT 2 kV AC rms for 1 min. between terminals There shall not be any breakdown' flashover. No breakdown or fl observed in case of an amples stic Error At following equidistant points 45 Hz 50 Hz Class index (0.3%) 5 - 1 5 - 2 ation due At following equidistant points 53 Hz Class index (0.3%) 5 - 1 5 - 2 fluential Iter shall 0.06 % -0.16 % -0.09 % fluential Iter shall not be any 0.06 % -0.05 % -0.05 % fluential Iter shall 0.16 % -0.05 % -0.05 % fluential Iter shall 0.06 % 0.05 % 0.02 % fluential Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % nbient points. 55 Hz 0.06 % of 0.33 % 0.33 % 0.22 % ation due Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.23 % hoint points. 55 Hz 0.36 % 0.13 % 0.13 % <td>Notage AT 2 kV AC rms for 1 min. between terminals There shall not be any breakdown'f fashover: Mohm Mohm Voltage AT 2 kV AC rms for 1 min. between terminals There shall not be any shorted together and foil wrapped on body. No breakdown or fl Mohm Mohm shorted together and foil wrapped on body. A1 following equidistant points 45 Hz Class index (0.3%) 5-1 5-2 ation due A1 following equidistant points 53 Hz Class index (0.3%) 5-1 5-2 finential Internial 0.06 % -0.16 % -0.09 % finential Intrinsic error checked at following equidistant 0.06 % 0.18 % 0.02 % hoint Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % hoints - 0.16 % 0.36 % 0.33 % 0.22 % noints - 0.33 % 0.23 % 0.33 % 0.23 %</td> <td>Insulation Designation</td> <td>etween</td> <td>Not less than 5 M ohm</td> <td>S-1</td> <td>S-2</td> <td>S-3</td> <td>Complied</td>	Notage AT 2 kV AC rms for 1 min. between terminals There shall not be any breakdown'f fashover: Mohm Mohm Voltage AT 2 kV AC rms for 1 min. between terminals There shall not be any shorted together and foil wrapped on body. No breakdown or fl Mohm Mohm shorted together and foil wrapped on body. A1 following equidistant points 45 Hz Class index (0.3%) 5-1 5-2 ation due A1 following equidistant points 53 Hz Class index (0.3%) 5-1 5-2 finential Internial 0.06 % -0.16 % -0.09 % finential Intrinsic error checked at following equidistant 0.06 % 0.18 % 0.02 % hoint Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % hoints - 0.16 % 0.36 % 0.33 % 0.22 % noints - 0.33 % 0.23 % 0.33 % 0.23 %	Insulation Designation	etween	Not less than 5 M ohm	S-1	S-2	S-3	Complied
VoltageAT 2 kV AC rms for 1 min. between terminalsThere shall not be any breakdown vf flashover.No breakdown or flashoverCompshorted together and foil wrapped on body.breakdown vf flashover.asmplesS-1S-3S-3Compsisc ErrorAt following equidistant points45 Hz0.06 %-0.16 %0.00 %0.00 %0.00 %48 Hz0.014 %-0.06 %-0.00 %-0.00 %-0.00 %-0.00 %-0.00 %0.00 %ation due55 Hz55 Hz-0.16 %-0.01 %-0.00 %-0.00 %-0.00 %-0.00 %finentialtities-0.18 %-0.18 %-0.03 %-0.03 %-0.03 %-0.03 %-0.03 %finentialtities-0.18 %-0.18 %-0.03 %0.03 %-0.03 %-0.03 %-0.03 %finentialtities-0.18 %-0.18 %-0.03 %0.03 %-0.03 %-0.03 %-0.03 %finentialtities-0.18 %-0.18 %-0.03 %-0.03 %-0.03 %-0.03 %finentialtities-0.18 %-0.18 %-0.03 %-0.03 %-0.03 %fitties100 %-0.18 %-0.18 %-0.03 %-0.03 %-0.03 %fitties100 %-0.18 %-0.18 %-0.03 %-0.03 %-0.03 %fitties100 %-0.18 %-0.18 %-0.18 %-0.03 %-0.03 %fitties100 %-0.18 %-0.18 %-0.13 %-0.03 %-0.03 %fitties100 %-0.13	VoltageAT 2 kV AC rms for 1 min. between terminalsThere shall not be any breakdown flashover.No breakdown or flashoverCompliedshorted together and foil wrapped on body.breakdown flashover.shorted together and foil wrapped on body.East index (0.5%)S - 1S - 3Compliedsite ErrorA1 following equidistant points45 HzClass index (0.5%)S - 1S - 3Compliedasin bet48 HzClass index (0.5%)S - 1S - 1S - 3Complied30 Hz0.06 %-0.06 %-0.06 %-0.09 %0.09 %31 following equidistant points55 Hz-0.06 %-0.09 %-0.09 %-0.09 %31 following equidistant points55 Hz-0.18 %-0.09 %0.09 %-0.09 %ation dueflastin due-0.18 %-0.18 %-0.09 %0.09 %0.09 %filestant100% of class index-0.18 %-0.09 %0.03 %0.03 %filestantpoints0.18 %-0.18 %0.03 %0.03 %filestantpoints0.18 %-0.08 %0.03 %0.03 %filestantpoints0.18 %-0.18 %0.03 %0.03 %filestantpoints0.18 %0.13 %0.03 %0.03 %filestantpoints0.18 %0.13 %0.33 %0.03 %filestantpoints0.18 %0.21 %0.34 %0.03 %filestantpoints0.24 %0.03 %0.03 %filestantpoints0.28 % </td <td>Voltage AT 2 kV AC mus for 1 min. between terminals shorted together and foil wrapped on body. There shall not be any breakdown' flashover. No breakdown of any observed in case of an asmples sic Error At following equidistant points 45 Hz 48 Hz 50 Hz Class index (0.5%) 5.1 5.2 sic Error At following equidistant points 45 Hz 53 Hz Class index (0.5%) 5.1 5.2 ation due 0.04 % -0.06 % -0.06 % -0.06 % -0.06 % futurial 1.00 % of class index (0.5%) 0.18 % -0.09 % not due Lower termp. 10 deg. C, Upper termp. 37 deg. C Permissible variation shall be 5-1 5-2 not ontice Lower termp. 10 deg. C, Upper termp. 37 deg. C Permissible variation shall be 5-1 5-2 not ontice Lower termp. 10 deg. C, Upper termp. 37 deg. C Permissible variation shall be 5-1 5-2 not ontice Lower termp. 10 deg. C, Upper termp. 37 deg. C Permissible variation shall be 5-1 5-2 not ontice Lower termp. 10 deg. C, Upper termp. 37 deg. C Permissible variation shall be 5-1 5-2 not ontice Lower termp. 10 deg. C, Upper termp. 37 deg. C Permissible variation shall be 5-1 5-2 not ontice 2.36 % 0.23 % 0.23 % 0.23 %</br></td> <td>Voltage AT 2 kV AC mus for 1 min. between terminals shorted together and foil wrapped on body. There shall not be any breakdown' flashover. No breakdown of any observed in case of an asmples sic Error At following equidistant points 45 Hz 48 Hz 50 Hz Class index (0.5%) 51 52 sic Error At following equidistant points 45 Hz 55 Hz Class index (0.5%) 51 52 ation due 0.04 % -0.06 % -0.06 % -0.06 % -0.06 % fittices 5.5 Hz 2.1 Hz 52 -0.018 % -0.09 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.00 % 6.018 % -0.018 % -0.018 % -0.018 % fittices 10.018 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.018 % -0.018 % -0.018 % -0.018 % -</td> <td>MIDISTEAL</td> <td>DIVISION OCCUPATION AND COND.</td> <td></td> <td>M ohm</td> <td>M ohm</td> <td>M ohm</td> <td></td>	Voltage AT 2 kV AC mus for 1 min. between terminals shorted together and foil wrapped on body. There shall not be any breakdown' flashover. No breakdown of any 	Voltage AT 2 kV AC mus for 1 min. between terminals shorted together and foil wrapped on body. There shall not be any breakdown' flashover. No breakdown of any observed in case of an asmples sic Error At following equidistant points 45 Hz 48 Hz 50 Hz Class index (0.5%) 51 52 sic Error At following equidistant points 45 Hz 55 Hz Class index (0.5%) 51 52 ation due 0.04 % -0.06 % -0.06 % -0.06 % -0.06 % fittices 5.5 Hz 2.1 Hz 52 -0.018 % -0.09 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.07 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.00 % 6.018 % -0.018 % -0.018 % -0.018 % fittices 10.018 % -0.018 % -0.018 % -0.018 % -0.018 % fittices 10.018 % -0.018 % -0.018 % -0.018 % -	MIDISTEAL	DIVISION OCCUPATION AND COND.		M ohm	M ohm	M ohm	
shorted together and foil wrapped on body.breakdown/ flashover.observed in case of any of the 3 samplessisc ErrorAt following equidistant points 45 Hz 48 Hz Class index (0.5%) $5 \cdot 1$ 0.06% $5 \cdot 2$ 0.00% $5 \cdot 3$ 0.00% 45 Hz 48 Hz 45 Hz 55 Hz Class index (0.5%) $5 \cdot 1$ 0.06% $5 \cdot 2$ 0.00% $5 \cdot 3$ 0.00% $5 \cdot 3$ 0.00% $5 \cdot 3$ 0.00% $6 \cdot 0.00\%$ 0.00% 0.00% 0.00% ation due fuential inticesLower temp. 10 deg. C, Upper temp. 37 deg. CPermissible variation shall be 0.33% $5 \cdot 1$ 0.33% $5 \cdot 3 \cdot 3$ 0.33% $5 \cdot 3 \cdot 3$ 0.33% Comp 0.33% 0Intrinsic error checked at following equidistant points. 100% of class index 0.24% 0.22% 0.33% 0.33% 0.33% 0.33%	shorted together and foil wrapped on body. breakdown/ flashovet. observed in case of any of the 3 samples stie Error At following equidistant points 45 Hz Class index (0.5%) 5-1 5-2 5-3 Complied stin flash 48 Hz 48 Hz 0.06 % 0.00 % 0.00 % 0.00 % 0.00 % 55 Hz 51 Hz 51 Hz 0.01 % -0.06 % 0.00 % 0.00 % 0.00 % ation due 55 Hz 51 Hz 0.01 % -0.00 % 0.00 % 0.00 % 0.00 % fities 0.01 % 0.01 % -0.01 % 0.01 % 0.00 % 0.02 % 0.02 % fities 0.01 % 0.01 % 0.01 % 0.01 % 0.02 % 0.02 % 0.02 % fities 0.01 % 0.01 % 0.03 % 0.02 % 0.03 % 0.03 % 0.03 % hort points. 48 Hz 100% of class index 0.33 % 0.21 % 0.33 % 0.33 % hort points. 51 Hz 0.36 % 0.33 % 0.33 % 0.34 % hort points. 0.36 % 0.03 % 0.34 % 0.34 % fittes 51 Hz 0.36 % 0.34 % 0.34 %	shorted together and foil wrapped on body. breakdown/ flashover. observed in case of ar samples sist Error At following equidistant points 45 Hz 2.2 At following equidistant points 45 Hz 2.016 % 0.06 % 0.06 % So Hz 5.1 Hz 5.1 Hz 5.2 ± 0.00 % 0.00 % ation due finential 0.017 % 0.00 % 0.00 % 0.00 % finential finential 100% of class index (0.5%) 0.118 % 0.018 % 0.018 % ntion due Lower temp. 10 deg. C. Upper temp. 37 deg. C Permissible variation shall be 5-1 5-2 ntices 100% of class index 0.33 % 0.22 % 0.03 % 0.18 % 0.33 % 0.23 % 0.33 % 0.22 % 0.13 % 55 Hz 0.04 % 0.33 % 0.22 %	shorted together and foil wrapped on body. breakdown/ flashover. observed in case of ar samples sist Error At following equidistant points 45 Hz 0.06 % 0.06 % 0.06 % 0.06 % 0.06 % 0.06 % 0.06 % 0.06 % 0.00 % 0.09 % 0.09 % 0.00 % 0	High Voltage	AT 2 kV AC rms for 1 min. between terminals	There shall not be any	No br	cakdown or fla	ashover	Complied
At following equidistant points Af following equidistant points S - 1 S - 2 S - 3 Comp 48 Hz 48 Hz -0.06 % -0.16 % 0.09 % 0.09 % 0.09 % 0.00 %	At following equidistant points 45 Hz Class index (0.5%) 5 · 1 5 · 2 5 · 3 Complied 48 Hz 48 Hz 48 Hz -0.06 % -0.16 % 0.09 % 0.09 % 0.09 % 0.00	At following equidistant points 45 Hz 48 Hz 50 Hz 50 Hz 51 Hz	At following equidistant points 45 Hz 48 Hz 50 Hz 50 Hz 51 Hz	Test	shorted together and foil wrapped on body.	breakdown/ flashover.	observe	d in case of an samples	y of the 3	4
45 Hz -0.06 % -0.16 % 0.09 % 48 Hz 50 Hz 50 Hz -0.04 % -0.06 % 0.09 % 52 Hz 52 Hz -0.16 % -0.09 % -0.02 % 53 Hz 55 Hz -0.18 % -0.09 % -0.09 % -0.09 % 55 Hz 55 Hz -0.18 % -0.09 % -0.09 % -0.09 % 55 Hz 55 Hz -0.18 % -0.09 % 0.02 % 60 16 % 0.18 % 0.18 % 0.02 % 7 deg C, Upper temp. 37 deg C Permissible variation shall be 5-1 5-2 5-3 1 Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.33 % 0.33 % points. 45 Hz 0.36 % 0.22 % 0.33 % 0.34 % 50 Hz 50 Hz 0.36 % 0.33 % 0.34 % 0.14 %	45 Hz -0.06 % -0.16 % 0 % 48 Hz -0.07 % -0.06 % 0.09 % -0.02 % 50 Hz 51 Hz -0.07 % -0.09 % -0.02 % -0.02 % 55 Hz 55 Hz -0.16 % 0.09 % -0.02 % -0.02 % 55 Hz 55 Hz -0.16 % -0.09 % -0.02 % -0.09 % -0.02 % 55 Hz 5 Hz -0.18 % -0.18 % -0.09 % 0.02 % -0.09 % Intrinsic error checked at following equidistant points. 100% of class index 0.33 % 0.22 % 0.33 % 0.33 % points. 48 Hz 0.36 % 0.33 % 0.31 % 0.31 % 0.31 % points. 48 Hz 0.36 % 0.36 % 0.33 % 0.31 % 0.31 % 55 Hz 55 Hz 0.36 % 0.33 % 0.31 % 0.31 % 0.01 %	45 Hz -0.06 % -0.16 % 48 Hz 50 Hz -0.04 % -0.06 % 50 Hz 51 Hz -0.04 % -0.09 % 55 Hz 55 Hz -0.16 % -0.09 % 55 Hz 51 Hz -0.04 % -0.09 % 55 Hz 51 Hz -0.04 % -0.09 % 55 Hz 51 Hz -0.18 % -0.03 % 10 deg C, Upper temp. 37 deg C Permissible variation shall be 5-1 5-2 11trinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % points. 48 Hz 0.020 % 0.23 % 0.22 % 0.13 % 50 Hz 50 Hz 0.33 % 0.22 % 0.13 % 0.22 % 0.13 % points. 55 Hz 0.33 % 0.33 % 0.13 % 0.13 %	45 Hz -0.06 % -0.16 % 48 Hz 50 Hz -0.04 % -0.06 % 50 Hz 51 Hz -0.04 % -0.09 % 55 Hz 55 Hz -0.18 % -0.09 % 55 Hz 51 Hz -0.18 % -0.09 % 55 Hz 51 Hz -0.18 % -0.09 % 0.18 % -0.18 % -0.03 % -0.18 % 1 51 Hz 52 -0.18 % -0.03 % 1 0.05 % 0.13 % -0.03 % 0.22 % 1 0.05 % 0.33 % 0.22 % 0.13 % 1 100% of class index 0.36 % 0.22 % 0.13 % 1 100% of class index 0.36 % 0.13 % 0.22 % 2 0.36 % 0.33 % 0.22 % 0.13 % 1 55 Hz 0.36 % 0.13 % 0.13 % 1 55 Hz 0.33 % 0.22 % 0.13 % 1 0.33 % 0.13 % 0.13 % 0.13 %	Intrinsic Error	At following equidistant points	Class index (0.5%)	S-1	S-2	S-3	Complied
48 Hz 48 Hz -0.04 % -0.06 % 0.09 % -0.01 % -0.01 % -0.01 %	48 Hz 48 Hz -0.04 % -0.06 % 0.09 % -0.02 % 50 Hz 53 Hz -0.016 % -0.09 % -0.02 % -0.02 % 51 Hz 53 Hz -0.116 % -0.09 % -0.02 % -0.09 % 51 Hz 53 Hz -0.116 % -0.09 % -0.02 % -0.09 % 51 Hz 53 Hz -0.118 % -0.09 % -0.02 % 51 Hz -0.018 % -0.03 % -0.09 % -0.09 % 100 due Lower temp. 10 deg. C, Upper temp. 37 deg. C Permissible variation shall be 5-1 5-2 5-3 100% of class index 0.33 % 0.22 % 0.33 % 0.33 % 0.33 % 100% of class index 0.33 % 0.21 % 0.33 % 0.34 % 50 Hz 51 Hz 0.36 % 0.33 % 0.31 % 100 %	48 Hz 50 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 50 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 6014% 6014% 6018% 6018% 6018% 6022% 6023% 6023% 6022%	48 Hz 50 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 50 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 53 Hz 6013% 48 Hz 6017% 6013% 53 Hz 6013% 0014% 6014% 6013% 6013% 006% 6014% 6023% 6013% intertal ities Lower temp. 10 deg. C, Upper temp. 37 deg. C Permissible variation shall be 100% of class index 5-1 5-2 ities Lower temp. 10 deg. C, Upper temp. 37 deg. C Permissible variation shall be 100% of class index 5-1 5-2 bient Intrinsic error checked at following equidistant points. 100% of class index 0.33 % 0.22 % bient points. 55 Hz 0.33 % 0.22 % 0.13 % As Hz 55 Hz 0.36 % 0.33 % 0.13 %				-0.06 %	-0 16 %	0%0	ſ
50 Hz 50 Hz -0.07 % -0.09 % -0.02 % 55 Hz 55 Hz -0.18 % -0.09 % -0.02 % 55 Hz 55 Hz -0.18 % -0.09 % -0.09 % 55 Hz 55 Hz -0.18 % -0.09 % -0.02 % 55 Hz 55 Hz -0.18 % -0.09 % -0.09 % 55 Hz 55 Hz -0.18 % -0.09 % -0.09 % ion due Lower temp. 10 deg. C, Upper temp. 37 deg.C Permissible variation shall be S-1 S-2 S-3 Comp ities Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % 0.38 % 0.33 % bient Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.33 % 0.33 % bient points. 45 Hz 0.22 % 0.33 % 0.34 % 0.34 % 52 Hz 52 Hz 0.36 % 0.33 % 0.31 % 0.34 % 0.34 %	50 Hz 50 Hz -0.07 % -0.09 % -0.02 % -0.02 % -0.09 % -0.02 % -0.09 % -0.02 % -0.09 % -0.01 % -0.09 % -0.09 % -0.09 % -0.09 % -0.09 % -0.01 % -0.09 % -0.01 % -0	50 Hz 50 Hz 50 Hz -0.07 % -0.09 % 52 Hz 55 Hz 55 Hz -0.09 % -0.09 % 0.16 % -0.18 % -0.09 % -0.09 % vential Lower temp. 10 deg. C, Upper temp. 37 deg C Permissible variation shall be 5-1 5-2 bient Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % points. 48 Hz 0.09% of class index 0.36 % 0.27 % 0.33 % 55 Hz 50 Hz 0.36 % 0.24 % 0.33 % 0.13 %	50 Hz 60 33 % 60 22 % 60 33 % 60 22 % 60 33 % 60 22 % 60 33 % 60 22 % 60 33 % 60 23 %		48 Hz		-0.04%	% 90 0-	% 60 0	
52 Hz 52 Hz -0.16 % -0.09 % 0.02 % 55 Hz 55 Hz -0.18 % -0.09 % 0.02 % 56 Hz 55 Hz -0.18 % -0.09 % 0.02 % 100 wential -0.18 % -0.09 % 0.02 % uential -0.18 % -0.09 % 0.02 % utics -0.18 % -0.09 % 0.02 % 100 % -0.18 % -0.09 % 0.02 % ities -0.18 % -0.09 % 0.02 % tics -0.18 % -0.09 % 0.02 % ities -0.18 % 0.18 % 0.02 % ities -0.18 % 0.02 % 0.03 % bient Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.33 % points. -0.13 % 0.22 % 0.33 % 0.34 % 50 Hz 52 Hz 0.33 % 0.33 % 0.34 % 52 Hz 52 Hz 0.33 % 0.33 % 0.34 %	S2 Hz 52 Hz -0.16 % -0.09 % 0.02 % ion due 55 Hz -0.18 % -0.09 % 0.02 % vential uential -0.16 % -0.09 % 0.02 % vential uential -0.18 % -0.09 % 0.02 % ion due Lower temp. 10 deg. C, Upper temp. 37 deg C Permissible variation shall be S-1 S-2 S-3 Complied bient Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.33 % 0.33 % points. 48 Hz 0.36 % 0.02 % 0.34 % 0.34 % S2 Hz S1 Hz 0.38 % 0.13 % 0.31 % ITEST	52 Hz 52 Hz -0.16 % -0.09 % ion due 55 Hz -0.18 % -0.18 % -0.09 % uential Lower temp. 10 deg. C, Upper temp. 37 deg.C Permissible variation shall be S-1 S-2 bient Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % bient points. 45 Hz 8 Hz 0.36 % 0.33 % 0.22 % 55 Hz 55 Hz 0.36 % 0.38 % 0.33 % 0.23 % 0.33 %	52 Hz 53 Hz -0.16 % -0.09 % ion due 55 Hz -0.18 % -0.18 % -0.18 % uential Lower temp. 10 deg. C, Upper temp. 37 deg.C Permissible variation shall be S-1 S-2 bient Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % bient points. 45 Hz 8 Hz 0.36 % 0.22 % 55 Hz 55 Hz 0.36 % 0.38 % 0.33 % 0.23 %		50 Hz		-0.07%	% 60 0-	-0.02%	
55 Hz 55 Hz 55 Hz -0.18 % -0.09 % -0.09 % uential uential -0.18 % -0.18 % -0.09 % -0.09 % uential uential Etes -0.18 % -0.18 % -0.09 % uential uential Etes -0.18 % -0.09 % -0.09 % tites Lower temp. 10 deg C, Upper temp. 37 deg.C Permissible variation shall be S-1 S-2 S-3 Comp bient Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % 0.38 % 0.33 % points. 48 Hz 0.24 % 0.22 % 0.34 % 0.34 % 50 Hz 51 Hz 0.36 % 0.33 % 0.34 % 0.34 %	S5 Hz 55 Hz -0.18 % -0.09 % -0.09 % tion due uential -0.18 % -0.09 % -0.09 % uential uential -0.18 % -0.09 % -0.09 % uential tites -0.18 % -0.09 % -0.09 % tites Lower temp. 10 deg. C, Upper temp. 37 deg. C Permissible variation shall be S-1 S-2 S-3 Complied hittinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % 0.33 % 0.33 % 0.34	55 Hz 55 Hz -0.18 % -0	55 Hz 55 Hz -0.18 % -0.18 % -0.18 % 0.22 % 0.23 % 0.23 % 0.23 % 0.23 % 0.23 % 0.23 % 0.33 % 0.13 % Ref Ref 55 Hz 51 Hz 0.36 % 0.33 % 0.24 % 0.33 % 0.13 %		52 Hz		-0.16%	% 60 0-	0.02 %	
tion due uential uential tites ti	tion due vential tities tion due Lower temp. 10 deg. C, Upper temp. 37 deg. C Ion due Intrinsic error checked at following equidistant points. 45 Hz points. 45 Hz 50 Hz 50 Hz 52 Hz 52 Hz 52 Hz 52 Hz 53 Hz 55	tion due vertial vertian 10 deg. C. Upper temp. 37 deg. C Permissible variation shall be 5-1 5-2 tion due Lower temp. 10 deg. C. Upper temp. 37 deg. C Permissible variation shall be 5-1 5-2 tion due Intrinsic error checked at following equidistant points. 45 Hz 90.00% of class index 0.23% 0.23% 0.22% 0.24% 0.22% 0.24% 0.23% 0.23% 0.33% 0.33% 8.5 Hz 90.013%	tion due vertial vertiant lo deg. C. Upper temp. 37 deg. C Permissible variation shall be 5-1 5-2 tion due Lower temp. 10 deg. C. Upper temp. 37 deg. C Permissible variation shall be 5-1 5-2 tion due Intrinsic error checked at following equidistant points. 45 Hz 80 Hz 52 Hz 53 Hz 55 Hz 90 interverter 25 Hz 90 interverter 2		55 Hz	-	-0.18%	-0.18%	-0.09 %	
tities tion due bient bient bient bient points. 45 Hz 50 Hz 52 S-3 100% of class index 48 Hz 50 Hz 52 Hz 50 Hz 52 Hz 50 Hz 52 Hz 53 % 53 % 53 % 53 % 53 % 53 % 53 % 53 %	tities tities tities tities totate bient Intrinsic error checked at following equidistant points. 45 Hz 50 Hz 55 Hz 5	tities tities tities tities tities bient Intrinsic error checked at following equidistant points. 45 Hz 48 Hz 50 Hz 51 55 Hz 60 23 % 00 33 % 00 36 % 0	tities titles filter temp. 10 deg. C, Upper temp. 37 deg. C Permissible variation shall be S-1 S-2 tion due Intrinsic error checked at following equidistant points. 45 Hz 8 Hz 50 Hz 50 Hz 51 Hz 90ints. 55 Hz 51 Hz 51 Hz 90ints. 55 Hz 700.36 % 0.33 % 0.33 % 8 Hz 70.33 % 0.33 % 0.33 % 8 Hz 70.33 % 0.34 % 0.33 % 0.33 % 8 Hz 70.33 % 0.35 Hz 70.35	Variation due						
tion due Lower temp. 10 deg. C, Upper temp. 37 deg. C Permissible variation shall be S-1 S-2 S-3 Comp bient Intrinsic error checked at following equidistant 100% of class index 0.33 % 0.22 % 0.38 % 0.33 % 0.33 % 0.34 % 0	tion dueLower temp. 10 deg. C, Upper temp. 37 deg. CPermissible variation shall beS-1S-2S-3CompliedbientIntrinsic error checked at following equidistant100% of class index0.33 %0.22 %0.38 %0.33 %points.45 Hz48 Hz0.36 %0.22 %0.33 %0.33 %0.34 %S0 Hz50 Hz52 Hz0.36 %0.33 %0.34 %0.34 %52 Hz55 Hz0.38 %0.13 %0.13 %0.31 %0.51 %	tion due Lower temp. 10 deg. C, Upper temp. 37 deg. C Permissible variation shall be 5-1 5-2 bient Intrinsic error checked at following equidistant points. 48 Hz 80 Hz 50 Hz 50 Hz 52 Hz 60.23 % 0.22 % 0.24 % 0.22 % 0.33 % 0.33 % 0.13 % 85 Hz 75 H	tion due Lower temp. 10 deg. C, Upper temp. 37 deg. C Permissible variation shall be 5-1 5-2 bient Intrinsic error checked at following equidistant points. 48 Hz 80 Hz 50 Hz 50 Hz 52 Hz 60.23 % 0.22 % 0.24 % 0.22 % 0.33 % 0.33 % 0.13 % 85 Hz 75 H							
bient Intrinsic error checked at following equidistant points. 45 Hz 48 Hz 50 Hz 52 Hz 52 Hz 54 Hz 52 Hz 53 % 0.36 % 0.37 % 0.38 % 0.33 % 0.34 % 0.36 % 0.37 % 0.36 % 0.36 % 0.37 % 0.36 % 0.37 % 0.37 % 0.36 % 0.37 % 0.36 % 0.37 % 0.36 % 0.37 % 0.36 % 0.37 % 0.36 % 0.36 % 0.37 % 0.36 % 0.37 % 0.36 % 0.37 % 0.37 % 0.36 % 0.37 % 0.37 % 0.37 % 0.37 % 0.37 % 0.37 % 0.36 % 0.37 % 0.36 % 0.37 % 0.37 % 0.36 % 0.37 % 0.37 % 0.37 % 0.36 % 0.37 % 0.37 % 0.37 % 0.37 % 0.37 % 0.37 % 0.36 % 0.37 % 0.37 % 0.36 % 0.37 % 0.31	bient Intrinsic error checked at following equidistant points. 45 Hz Points. 45 Hz 48 Hz 50 Hz 75 Hz 55 Hz 55 Hz 55 Hz 75 Hz 7	bient Intrinsic error checked at following equidistant points. 45 Hz 48 Hz 50 Hz 60.23 % 0.23 % 0.23 % 0.23 % 0.23 % 0.33 % 0.13 % Rele	bient Intrinsic error checked at following equidistant points. 45 Hz 48 Hz 50 Hz 50 Hz 50 Hz 50 Hz 53 Kz 0.23 % 0.22 % 0.23 % 0.24 % 0.22 % 0.24 % 0.23 % 0.23 % 0.23 % 0.23 % 0.23 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.23 % 0.24 % 0.23 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.23 % 0.24 % 0.24 % 0.23 % 0.24 % 0.24 % 0.23 % 0.24 % 0.	Variation due	Lower temp. 10 deg. C, Upper temp. 37 deg.C	Permissible variation shall b		S-2	S-3	Complied
points. 45 Hz 0.33 % 0.22 % 0.38 % 48 Hz 0.36 % 0.37 % 0.38 % 0.33 % 50 Hz 0.36 % 0.33 % 0.33 % 0.34 % 52 Hz 0.36 % 0.33 % 0.34 % 0.34 % 52 Hz 0.38 % 0.13 % 0.31 % 0.31 %	pounts. 45 Hz 0.33 % 0.22 % 0.38 % 48 Hz 0.34 % 0.27 % 0.33 % 50 Hz 50 Hz 0.24 % 0.22 % 0.33 % 50 Hz 50 Hz 0.36 % 0.33 % 0.33 % 52 Hz 0.36 % 0.33 % 0.34 % 55 Hz 0.38 % 0.13 % 0.31 %	points. 45 Hz 0.33 % 0.22 % 48 Hz 48 Hz 0.36 % 0.22 % 50 Hz 50 Hz 0.36 % 0.22 % 55 Hz 0.38 % 0.13 % 55 Hz 0.38 % 0.13 %	points. 45 Hz 0.33 % 0.22 % 48 Hz 48 Hz 0.36 % 0.22 % 50 Hz 50 Hz 0.36 % 0.22 % 55 Hz 0.38 % 0.13 % 55 Hz 0.38 % 0.13 %	to ambient	Intrinsic error checked at following equidistant	100% of class index				
0.36% 0.27% 0.33% 0.24% 0.22% 0.33% 0.36% 0.33% 0.34% 0.38% 0.13% 0.31%	0.36 % 0.27 % 0.33 % 0.34 % 0.34 % 0.33 % 0.34 % 0.36 % 0.36 % 0.34 % 0.34 % 0.34 % 0.34 % 0.34 % 0.31 % 0.31 % 0.31 % 0.51 % 0.	0.36% 0.27% 0.24% 0.22% 0.36% 0.33% 0.38% 0.13% Rele	0.36% 0.27% 0.24% 0.22% 0.36% 0.33% 0.38% 0.13% Rele	temp.			0.33 %	0.22 %	0.38 %	
0.24 % 0.22 % 0.36 % 0.36 % 0.33 % 0.34 % 0.38 % 0.13 % 0.31 %	0.24 % 0.22 % 0.36 % 0.36 % 0.36 % 0.36 % 0.38 % 0.33 % 0.34 % 0.34 % 0.38 % 0.13 % 0.13 % 0.31 % TEST	0.24 % 0.22 % 0.33 % 0.33 % 0.13 % 0.13 % Rele	0.24 % 0.22 % 0.33 % 0.33 % 0.13 % 86k		48 Hz		0.36%	0.27 %	0.33 %	
0.36% 0.33% 0.34%	0.36 % 0.33 % 0.34 % 0.34 % 0.38 % 0.13 % 0.13 % 0.31 % 0.	0.36 % 0.33 % 0.13 % Rele	0.36 % 0.33 % 0.13 % Rele	-	SO H2		0.24 %	0.22 %	0.36%	
038% 013% 031.0000	0.31 0.13 % 0.13 % 0.31 0.41 TEST	0.38 % 0.13 % Rele	0.38 % 0.13 % Rele		50 Hz		0.36%	0.33 %	0.34 %	
	Releases and the second	Reic	Rele				0.38%	0.13%	0.31-00	TEOL
								Rele		
Kelenser and the second								-	HILL CONTRACTOR	

A By ER 36 COMMITEST Complied Complied Complied Complied Remark 9 OF -0.04 % -0.04 % -0.04 % REPORT NO. ERTL(W) / 2002E&S293 -0.04 % -0.04 % $\begin{array}{c} 0.04 \ \% \\ 0.02 \ \% \\ 0.04 \ \% \\ 0.04 \ \% \end{array}$ -0.06 % % 0PAGE ŝ Observation -0.04 % -0.04 % -0.04 % 0.06 % 0.06 % 0.06 % 0.06 % 0.06 % 0.02 % 0.02 % 0.04 % -0.04 % 0.02 % -0.04 % 2003 -0.04 % -0.04 % -0.04 % 0.06 % 0.06 % 0.02 % 0.02 % -0.04 % -0.06 % -0.04 % -0.04 % -0.04 % -0.02 % shall be 100% of class shall be 100% of class shall be 100% of class Permissible variation Permissible variation Permissible variation shall be 50% of class Permissible variation Requirement index index index index 195.5 V AC 230 V AC 264.5 V AC 50 Hz 52 Hz 55 Hz 48 Hz 48 Hz 50 Hz 52 Hz 55 Hz 45 Hz 45 Hz Intrinsic error to be measured at reference plane and humidity 80% Intrinsic error checked at following Lower Relative humidity 25%, Upper Relative Voltage varied from 195.5 V to 264.5 VAC. Superimpose 15 % of third harmonics up on backward, left & right direction. Maximum then at 5 deg. Inclination plane in forward, 1 deviation at following equidistant points Test Condition MINISTRY OF INFORMATION TECHNOLOGY (STQC Dtc.) SUBJECT : TYPE TESTING ANALOG FREQUENCY METER the fundamental wave form. ELECTRONICS REGIONAL TEST LABORATORY (WEST) equidistant points to distortion of Test/Parameter Variation due Variation due Variation due Variation due AC measured to voltage of AC measured to position to humidity quantity quantity 2.4.4 Sr.No. 2.4.4 2.4.3 2.4.2

TORY (M 190

Released By

OKS ANFORMATIO ANDW (II)

	·.													-			: (-CONTOR	
Complied		Complied							Complied								Complied	V	Complet	18/20/
S-3	0 %0			-0.09 %	%0	-0.02 %	-0.04 %	-0.18 %			-0.11%	-0.02 %	-0.07 %	-0.02 %	-0.11%		7%		on of rest	er den er er den er en er
S-2	%0			-0.07 %	-0.06 %	~ 60.0-	- 0.09 %	-0.11 %		-	-0.24 %	-0.16%	-0.16 %	-0.16%	-0.20 %		7 %		Indices reached the position of rest	eacn case
 S-1	%0			-0.02 %	0.02 %	0.04 %	-0.02 %	-0.06 %			-0.06 %	-0.06 %	%0	-0.16%	-0.27 %		7%		Indices reac	WITHIN 48 IN CACH CASE
6 % of fiducial value		Within the limit of intrinsic	error						Shall meet the requirement of intrinsic error								Shall not exceed 20% of scale	length	Within 1.5% scale length after	4 S.
AC excitation of upper limit under an external	magnetic field of 0.4kA/m. Maximum deviation to be observed.	Accuracy test carried out by mounting UUT	on Non Ferrous Panel (PVC) & Ferrous Panel at following equidistant points	45 Hz	48 Hz	50 Hz	52 Hz	55 Hz	Accuracy test carried out by mounting UUT on conductive support at following equidistant	points	45 Hz	48 Hz	50 Hz	52 Hz	55 Hz		By suddenly applying 2/3 rd of measuring	range & note down the % overshoot.	By suddenly applying 2/3 rd of measuring	range & note down time (sec).
Variation due to	magnetic field of external origin	Variation due to	ferromagnetic supports						Variation due to conductive	supports				-		Damping	Mechanical	overshoot	Response time	
2.4.5		2.4.6							2.4.7							2.5	2.5.1		2.5.2	

Released By

4011

W)

ы Чо REPORT NO. ERTL(W) / 2002E&S293 PAGE 5 JUL 2003 MINISTRY OF INFORMATION TECHNOLOGY (STQC Dte.) SUBJECT : TYPE TESTING ANALOG FREQUENCY METER ELECTRONICS REGIONAL TEST LABORATORY (WEST)

Remark	Complied	<u>, , , , , , , , , , , , , , , , , , , </u>	Complied								Complied								ONAL TEOL	CONT. OF INC.		2 日本 1 日本
	S-3	0.04 %	srved	C 0	<u>.</u>	0.07 %	-0.11%	-0.06 %	-0.07 %	-0.07 %	any of the			S-3	-0.18%	-0.13 %	-0.16 %	-0.15 %	2.00.0-	CE A COVT. OF	AL.	000
Observation	S-2	0 %	No residual deflection observed	()	7-0	0.04 %	-0.02 %	-0.04 %	-0.04 %	0%	No deviation observed on any of the three samples.			S-2	0.04 %	-0.02 %	-0.13 %	-0.09 %	% 0		Rele	
	S-1	0.06%	No residual c	C 1	1-2	-0.02 %	% 0	-0.02 %	0.02 %	-0.04 %	No deviation three samples.	1		S-1	% 0	-0.04 %	-0.11%	0.04 %	-0.06 %			
Requirement	Shall comply with the	requirements of class index.	a) Residual deflection shall not exceed 1% of scale		b) Shall comply with the accuracy requirement	anterio vintes (an man					a) Deviation of index from zero scale mark shall not	exceed 0.5% of scale length	b) Shall comply with accuracy	requirements.	1							
Test Condition	By applying 90% of upper limit of measuring	range for 30 to 35 min. & note down the deviation (%)	ng 120% voltage of upper limit		b) Accuracy test at following equidistant	45 Hz	48 Hz	50 Hz	52 Hz	55 Hz	a) Apply 200 % voltage for 0.5s nine times at an interval of 60s and once for 5s.		b) Accuracy test at the following equidistant	points :	- 45 Hz	48 Hz	50 Hz	52 Hz	55 Hz			
Test/Parameter	Self Heating		Continuous overload								Overloads of short duration			_								
Sr.No.	2.6		2.7								2.8	_										

Release A Charles NOD F

W

INFORMATI E), MUNBA

ORY (WEST)	Y (STQC Dte.) REPORT NO. ERTL(W) / 2002E&S293	JENCY METER PAGE OF 0F	Test Condition Requirement Observation Remark		55 degC for 16h & -10 deg.C for 8h. 3To be conditionedConditionedcycles while at 80% of the upper limit of excitation. During the last cycle at the end of 16h and while at high temp. slowly increase & decrease the excitation untilConditioned
ELECTRONICS REGIONAL TEST LABORATORY (WEST)	MINISTRY OF INFORMATION TECHNOLOGY (STQC D(c.)	SUBJECT : TYPE TESTING ANALOG FREQUENCY METER	Sr.No. Test/Parameter	2.9 Environmental Tests	2.9.1 Temp. cycling 55 deg.C for 16h & cycles while at 80% (cycles while at 80% (excitation. During the of 16h and while at increase & decrease

				.:,		₹0 55	
Remark		Complied		Complied	AEGIONAL TE	CONVERSION OR MATTON	ELON ELON ELON ELON ELON ELON ELON ELON
	g to	S-3 -0.06 % -0.22 % 0.04 %		S-3	-0.18%	-0.27 % -0.06 %	
Observation	Conditioned Indices were responding to excitation change.	S-2 -0.24 % -0.16 % -0.20 % -0.20 %	Conditioned	S-2	-0.33 % -0.40 %	-0.38 % -0.42 % -0.44 %	Released By
	Conditioned Indices were resp excitation change.	S-1 0.22 % 0.24 % 0.24 % 0.20 % 0.11 %		S-1	0.15% 0.18%	0.22 % 0.13 % 0.13 %	
Requirement	To be conditioned	Error shall be within class index (0.5%)	To be conditioned	Class index (0.5%)			
Test Condition	55 deg.C for 16h & -10 deg.C for 8h. 3 cycles while at 80% of the upper limit of excitation. During the last cycle at the end of 16h and while at high temp. slowly increase & decrease the excitation until index reaches the upper limit of measuring range & return to zero. Similarly after 8h at lower temp. slowly increase & decrease the excitation until index reaches the upper limit of measuring range & return to zero.	At the following equidistant points : 45 Hz 48 Hz 50 Hz 52 Hz 55 Hz	As per IS 9000. Part 5 Sec. 1 (16+8) h cycle. 2 cycles. Recovery 24 h.	ant points :	45 Hz 48 Hz	50 Hz 52 Hz 55 Hz	
Test/Parameter Environmental Tests	Temp. cycling	Post Measurement Intrinsic error	Damp Heat Cyclic Test	Post	Measurement Intrinsic error		
Sr.No. 2.9	2.9.1	2.9.2	2.9.3	2.9.4			

(^c)

ATORY (W) 1000 015

REPORT NO. ERTL(W) / 2002E&S293	PAGE OF 7 9	Observation	No deviation observed in any of Complied the three samples.	No visual damage observed	A THE PART OF THE
REPORT NO.	L-2 JUL 2	Ō	· · · · · · · · · · · · · · · · · · ·	Co visual	
		Requirement	Deviation expressed as percentage of scale length shall not exceed more than 50% of class index.	To be conditioned	
ELECTRONICS REGIONAL TEST LABORATORY (WEST) MINISTRY OF INFORMATION TECHNOLOGY (STQC Dte.)	SUBJECT : TYPE TESTING ANALOG FREQUENCY METER	Test Condition	Energise the samples for 30s at upper limit of measuring range. Quickly reduce the excitation to zero. Deviation from zero shall be measured 15s after the excitation has been reduced to zero.	As per IS 9000 Part 8 Sweep range: 10-150-10 Hz Displacement amplitude: 0.15 mm peak in the range 10-60 Hz, Acceleration: 2g in the range: 60-150 Hz, Sweep Rate: 1 octave/min., Duration : 6 h. Endurance shall be performed at resonance frequency. Vibration shall be applied at the resonance frequency for 6h in that direction. If the resonance is observed in any of these 3 directions, the equipment shall be subjected to vibration at each of the frequencies 25, 50, 100 and 150 Hz in each of the 3 mutually perpendicular direction so that the total duration shall not exceed 6 h.	
VICS REGIONAL T OF INFORMATIO	TYPE TESTING A	Test/Parameter	Deviation from zero	Vibration test	

																			LEIONAL TEL	Control 19	CORIMATION.			ノミ	Ô	
		9 9	Remark	Complied	L			2		Complied	•					robit			Complied	6.5.		<u>^</u>	1100 00 00 00 00 00 00 00 00 00 00 00 00	100 H	C ALLE	
REPORT NO. ERTL(W) / 2002E&S293		PAGE 8		S-3	0.07%	0.06%	_	-		S-3	0.2%	0.02 %	0.13 %	0.11 %	0.09 %				S-3	0.0 %	-0.18%	-0.16%	-0.20%	-0.36 %	ed By	
ERTL(W)/			Observation	S-2	0.42 % 0.31 %	0.13 %	0.13 /0	Conditioned		S-2	0 24 %	0.18%	0.18%	0.07 %	0 %	Conditioned			S-2	0.16%	0.24 %	% 60 [.] 0-	-0.18%	-0.27%	Released By	
REPORT NO		JUL 2003		S-1	0.06 % 0.06 %	% /0.0 % 60.0	0/ 11.0			S-1	0 13 %	0.02 %	0.06 %	0.15 %	0.09 %				S-1	0.47 %	0.49 %	0.45 %	0.38 %	0.45 %		
		2	Requirement	Error shall not deviate more than	50% of class index		- 	To be conditioned		Error after test shall not deviate	hv more than 100% of class	index from the original values	measured before shock test.			To be conditioned			Error shall be within class index	(0.5 %)						
ELECTRONICS REGIONAL TEST LABORATORY (WEST)	V TECHNOLOGY (STQC Dte.)	SUBJECT : TYPE TESTING ANALOG FREQUENCY METER	Test Condition	At the following equidistant points :		52 Hz		celerat on: 11	3 shocks in both directions of 3 mutually perpendicular axes (total 18 shocks)	At the following equidistant points :	45 Hz	48 Hz	50 Hz	52 Hz	55 Hz	1	of such amplitude that the pointer reaches max value of the scale without impinging on	the end stop. ON for 1 sec OFF for 4 sec during one cvcle.	At the following equidistant points :		48 Hz	50 Hz	52 Hz	70 66		
NICS REGIONAL TI	MINISTRY OF INFORMATION TECHNOLOGY	: TYPE TESTING AI	Test/Parameter	Accuracy Test	(Post Vibration)			Shock Test		Accuracy Test	(Doet Shork)	(FUSI DILUCK)				Life Test			Accuracy Test	(Post Life Test)	-					
ELECTRO	MINISTRY	SUBJECT	Sr.No.	2.12				2.13		2 14						2.15			2.16							

ELECTRONICS REGIONAL TEST LABORATORY (WEST)	REPORT NO. ERTL()	V)/2002E&	8202
MINISTRY OF INFORMATION TECHNOLOGY (STQC Dte.)	NEI OKT NO. EKTE(<i>v)</i> /2002E&	3293
SUBJECT: TYPE TESTING OF ANALOG FREQUENCY METER	_2 JUL 2003	PAGE 9	OF 9

3.0 General Remarks : Nil.

REPORT APPROVED BY REPOR enak HEAD (E&S) MADA

OUR ACCREDITATION STATUS

ERTL (W) set up under the STQC Directorate, Ministry of Communications & Information Technology, Govt. of India has been accreditated under number of national / international systems as follows :

SYSTEM	AREA	STATUS
IECQ (International Electro-technical Commission on Quality Assessment System for Electronic Components)	 Component Testing Resistors (Fixed) Capacitors (Fixed) 	Accreditated as ITL (Independent Test Laboratory)
NABL (C), India National Accreditational Board for Test & Calibration laboratories (Calibration System)	Calibration Electro-technical discipline Thermal discipline Mechanical discipline 	Accreditated Calibration Laboratory
NABL(T), India National Accreditational Board for Test & Calibration laboratories (Testing System)	Electronic & Electrical Testing	Accreditated Test Laboratory
IECEE-CE-Scheme	 Mains Operated Electronic Consumer Products 	Approved as a CB test Laboratory
Other recognisation		Recognised by CSPO of State Govt., DOT, Naval Docyard, LCSO etc.